Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-506622

RESUMO

Cellular immune defects associated with suboptimal responses to SARS-CoV-2 mRNA vaccination in people receiving hemodialysis (HD) are poorly understood. We longitudinally analyzed antibody, B cell, CD4+ and CD8+ T cell vaccine responses in 27 HD patients and 26 low-risk control individuals (CI). The first two doses elicit weaker B cell and CD8+ T cell responses in HD than in CI, while CD4+ T cell responses are quantitatively similar. In HD, a third dose robustly boosts B cell responses, leads to convergent CD8+ T cell responses and enhances comparatively more Thelper (TH) immunity. Unsupervised clustering of single-cell features reveals phenotypic and functional shifts over time and between cohorts. The third dose attenuates some features of TH cells in HD (TNF/IL-2 skewing), while others (CCR6, CXCR6, PD-1 and HLA-DR overexpression) persist. Therefore, a third vaccine dose is critical to achieve robust multifaceted immunity in hemodialysis patients, although some distinct TH characteristics endure.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-502672

RESUMO

Spacing the first two doses of SARS-CoV-2 mRNA vaccines beyond 3-4 weeks raised initial concerns about vaccine efficacy. While studies have since shown that long-interval regimens induce robust antibody responses, their impact on B and T cell immunity is poorly known. Here, we compare in SARS-CoV-2 naive donors B and T cell responses to two mRNA vaccine doses administered 3-4 versus 16 weeks apart. After boost, the longer interval results in higher magnitude and a more mature phenotype of RBD-specific B cells. While the two geographically distinct cohorts present quantitative and qualitative differences in T cell responses at baseline and after priming, the second dose led to convergent features with overall similar magnitude, phenotype and function of CD4+ and CD8+ T cell responses at post-boost memory timepoints. Therefore, compared to standard regimens, a 16-week interval has a favorable impact on the B cell compartment but minimally affects T cell immunity.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-473317

RESUMO

Spacing of the BNT162b2 mRNA doses beyond 3 weeks raised concerns about vaccine efficacy. We longitudinally analyzed B cell, T cell and humoral responses to two BNT162b2 mRNA doses administered 16 weeks apart in 53 SARS-CoV-2 naive and previously-infected donors. This regimen elicited robust RBD-specific B cell responses whose kinetics differed between cohorts, the second dose leading to increased magnitude in naive participants only. While boosting did not increase magnitude of CD4+ T cell responses further compared to the first dose, unsupervised clustering analyses of single-cell features revealed phenotypic and functional shifts over time and between cohorts. Integrated analysis showed longitudinal immune component-specific associations, with early Thelper responses post-first dose correlating with B cell responses after the second dose, and memory Thelper generated between doses correlating with CD8 T cell responses after boosting. Therefore, boosting elicits a robust cellular recall response after the 16-week interval, indicating functional immune memory.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21263532

RESUMO

While the standard regimen of the BNT162b2 mRNA vaccine includes two doses administered three weeks apart, some public health authorities decided to space them, raising concerns about vaccine efficacy. Here, we analyzed longitudinal humoral responses including antibody binding, Fc-mediated effector functions and neutralizing activity against the D614G strain but also variants of concern and SARS-CoV-1 in a cohort of SARS-CoV-2 naive and previously infected individuals, with an interval of sixteen weeks between the two doses. While the administration of a second dose to previously infected individuals did not significantly improve humoral responses, we observed a significant increase of humoral responses in naive individuals after the 16-weeks delayed second shot, achieving similar levels as in previously infected individuals. We compared these responses to those elicited in individuals receiving a short (4-weeks) dose interval. For the naive donors, these responses were superior to those elicited by the short dose interval.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253907

RESUMO

Despite advances in COVID-19 management, it is unclear how to recognize patients who evolve towards death. This would allow for better risk stratification and targeting for early interventions. However, the explosive increase in correlates of COVID-19 severity complicates biomarker prioritisation. To identify early biological predictors of mortality, we performed an immunovirological assessment (SARS-CoV-2 viral RNA, cytokines and tissue injury markers, antibody responses) on plasma samples collected from 144 hospitalised COVID-19 patients 11 days after symptom onset and used to test models predicting mortality within 60 days of symptom onset. In the discovery cohort (n=61, 13 fatalities), high SARS-CoV-2 vRNA, low RBD-specific IgG levels, low SARS-CoV-2-specific antibody-dependent cellular cytotoxicity, and elevated levels of several cytokines and lung injury markers were strongly associated with increased mortality in the entire cohort and the subgroup on mechanical ventilation. Model selection revealed that a three-variable model of vRNA, age and sex was very robust at identifying patients who will succumb to COVID-19 (AUC=0.86, adjusted HR for log-transformed vRNA=3.5; 95% CI: 2.0-6.0). This model remained robust in an independent validation cohort (n=83, AUC=0.85). Quantification of plasma SARS-CoV-2 RNA can help understand the heterogeneity of disease trajectories and identify patients who may benefit from new therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...